SSH for fun and profit

Sebastian Krahmdwrahmer@cs.uni-potsdam.de

July 1, 2002

Abstract

The Secure Shell (SSH) protocol which itself is considered strong is often weakly
implemented. Especially the SSH1/SSH2 interoperabillity as implemented in most
SSH clients suffers from certain weak points as described below. Additionally the
SSH2 protocol itself is also flexible enough to contain some interesting parts for at-
tackers.

Disclaimer

This material' is for educational purposes only. They demonstrate weaknesses in certain
SSH implementations. All described tests and captures have been done in my own private
LAN. It is strongly recommended that you do not test these programs without prior written
permission of the local authorities.

The described attack-program will be made available one week after releasing this pa-
per to give vendors time for fixes (which are rather trivial) to limit the possibility of abusage.

1 Introduction

In this paper | will describe how SSH clients can be tricked into thinking they are missing
the hostkey even though they already have it in their list of known keys. This is possible
due to some points in the SSH drafts which makes life of SSH developers harder but which
was ment to offer special protection or more flexibility.

| assume you have a basic understanding of how SSH works. However it is not nec-
essary to understand it all in detail because the attacks succeeds in the handshake where
only a few packets have been exchanged. | also assume you are familar with the common
attacking scenarios in networks like "Man in the Middle” attacks, hijacking attacks against
plaintext protocols, replay attacks and so on.

2 Playing with the banner

The SSH draft demands that both, client and server, exchange a banner before negotiating
the key used for encrypting the communication channel. This is indeed needed for both
sides to see which version of the protocol they have to speak. A banner commonly looks
like

SSH-1.99-OpenSSH_2.2.0p1

1this paper and provided programs
2for the host they connected to

2 PLAYING WITH THE BANNER 2

A client obtaining such a banner reads this as "speak SSH1 or SSH2 to me”. This
is due to the 1 after the dash, the so called remote major version. It allows the client to
choose SSH1 for key negotiation and further encryption. However it is also possible for
the client to continue with SSH2 packets as the 99 tells him which is also called the remote
minor versiod. Depending on the clients configuration files and commandline options he
decides to choose one of both protocols. Assuming the user does not force a protocol with
either of the-1 or-2 switch most clients should behave the same way. This is due to the
configuration files which do not differ that much across the various SSH vendors and often
contain the line

Protocol 1,2

which makes the client choose SSH protocol version 1. It is obvious what follows now.
Since the SSH client used to use SSH1 to talk to the server it is likeley that he never spoke
SSH2 before. This may be exploited by attackers to prompt a banner like

SSH-2.00-TESO-SSH

to the client. The client looks up his database of known hosts and misses the hostkey
because it only finds the SSH1 key of the server which does not help much because ac-
cording to the banner he is not allowed to speak SSH1 anyMidrestead of presenting a

warning like
clelelelclaeeeeeeeeeeeeeeeeceeeceecececccecceceeeEeeieeieieleledel
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

clejeleeiaecleeleeeeeceeeeeelceceeeeccceeeeclceceeeeelelelel
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA1 host key has just been changed.

The fingerprint for the RSA1l key sent by the remote host is
f3:cd:d9:fa:c4:c8:b2:3b:68:¢5:38:4e:d4:b1:42:4f.

Please contact your system administrator.

if someone tries MiM attacks against it without the banner-hack, it asks the user to just
accept the new key:

Enabling compatibility mode for protocol 2.0

The authenticity of host ’lucifer (192.168.0.2)' can’'t be established.
DSA key fingerprint is ab:8a:18:15:67:04:18:34:ec:c9:ee:9h:89:b0:da:eb.
Are you sure you want to continue connecting (yes/no)?

Itis much easier now for the user to typesinstead of editing th&nown _hosts file
and restarting the SSH client. Once accepted, the attackers SSH server would record the
login and password and would forward the SSH connection so the user does not notify his
account was just compromised.

The described attack is not just an upgrade attack. It also works to downgrade SSH2
speaking clients to SSH1. If the banner would contalh the client only spoke SSH2 to
the original server and usually can not know the SSH1 key of the server because he does
not speak SSH1 at all. However our MiM server speaks SSH1 and prompts the client once
again with a key he cannot know.

This attack will not work for clients which just support one protocol (likely to be SSH1)
because it only implememnts one of them. These clients should be very seldom and most

3|t is a convention that a remote-minor version of 99 with a remote-major version of 1 means both protocols
4since the remote major version number is 2

3 PLAYING WITH THE KEYS 3

if not all ssh clients support both versions, indeed it is even a marketing-pusher to support
both versions.

If the client uses RSA authentication there is no way for the attacker to get in between
since he cant use the RSA challenges presented to him by the server because he is talk-
ing a different protocol to the client. In other words, the attacker is never speaking the
same version of the protocol to both partfeand thus cannot forward or intercept RSA
authentication.

A sample MiM programgsharp which mounts the banner-hack and records logins can
be found at [7350ssharp].

3 Playing with the keys

It would be nice to have a similar attack against SSH without a version switch. This is
because the version switch makes it impossible to break the RSA authentication.

Reading the SSH2 draft shows that SSH2 does not use the hostkey for encryption any-
more 8. Instead the client obtains the hostkey to check whether any of the exchanged
packets have been tampered with by comparing the server senf MRChis own com-
puted hash. The SSH2 draft is flexible enough to offer more than just one static algorithm
to allow MAC computation. Rather it specifies that during key exchange the client and the
server exchange a list of prefered algorithms they use to ensure packet integrity. Commonly
DSA and RSA are used:

stealth@liane:™ telnet 192.168.0.2 22

Trying 192.168.0.2...

Connected to 192.168.0.2.

Escape character is 7.
SSH-1.99-OpenSSH_2.2.0p1

SSH-2.0-client
‘$es%924D=)ydiffie-hellman-groupl-shalssh-dss...

| deleted a lot of characters and replaced it with "...” because the interesting part is
the ssh-dss which denotes the servers favorite algorithm used for MAC computation.
Clients connecting to 192.168.0.2 cannot have a RSA key for computation because the
server does not have one! Ofcorse the attackers MiM program has a RSA key and offers
only RSA to ensure integrity:

stealth@liane:™ telnet 192.168.0.2 22

Trying 192.168.0.2...

Connected to 192.168.0.2.

Escape character is 7.

SSH-2.0-OpenSSH_2.9p1

SSH-2.0-client

at seu>vME=diffie-hellman-group-exchange-shal,
diffie-hellman-groupl-shalssh-rsa...

A ssh client connecting to our MiM server will once again prompt the user to accept
the new key instead of issuing the MiM warning.

The MiM server connected to the original server and got to know that he is using DSA.
He then decided to face the user with a RSA key. If the original server offers DSA and RSA

Sclient and server

6as with SSH1 where the hostkey was sent to the client which sent back the sessionkey encrypted with the
hostkey

"Message Authentication Code; the server computes a hash of the packets exchanged and signs it using the
negotiated algorithm

4 COUNTERMEASURES 4

the MiM server will wait until the client sends his prefered algorithms and will choose an
algorithm the client is naming for his second choice. A RFC compliant SSH2 server has to
choose the first algorithm from the client list he is supporting, our MiM server will choose
the next one and thus produces a key-miss on client-side. This will again produce a yes/no
prompt instead of the warning message. [7350ssharp] also supports the key-hack mode.

4 Countermeasures

Having the RSA hostkey for a server offering a DSA hostkey means nothing for todays
clients. They ignore the fact that they have a valid hostkey for that host but in a different
keytype. SSH clients should also issue the MiM warning if they find hostkeys for the server
where either the version or type does not match. Its very likely someone in playing MiM
games. In my eyes it is definitely a bug in the SSH client software.

5 An Implementation

There already exist some MiM implementations for SSH1 such as [dsniff] or [ettercap].
Usually they understand the SSH protocol and put much effort into packet assembling
and deassembling or forwarding. Things are much simg@siarpis based on a normal
OpenSSH daemon which was modified to accept any login/password pair and starts a spe-
cial shell for these connections: a SSH client which is given the username/password and
the real destination IP. It logs into the remote host without user-interaction and since it is
bound to the mim servers pty it looks for the user like he enters his normal shell. This way
it is not needed to mess with SSH1 or SSH2 protocol or to replace keys etc. We just play
with the banner or the signature algorithm negotiation the way described above.

If compiled with USEMSS option enabledssharpwill slip the SSH client through
a screen-like session which allows attaching of third parties to exising (mimed) SSH1 or
SSH2 connections. It is also possible to kick out the legitimate user and completely take
control over the session. Following a screenshot of such a hijacked SSH connection:

5 AN IMPLEMENTATION 5

stealthidliane:™> Juszr/bindzsh -2 root@l192,168,0.72

The authenticity of host '192,168,0.2 (192,168.0,2)' can't be established,
[5A key fingerprint iz c9:8Fifber it ther22i0f t2etbdicdifOrec 11192173,
Are you sure you want to continue connecting (yesfnol? uyes

Warning: Permanently added '192,188.0,2' (DSA) to the list of known hosts,
root@192,168,0,2's password:

Welcome to lucifer,

Lazt login: Sun Jun 16 10:14:29 2002 from 192,168,0,2

Hawe a lot of fun,..

lucifer:™ # id

wid=0{root) gid=0(root) groups=0lroot),1(bin}, 14{uucp) 150 shadow) 16{dialout) 17
faudio) 504(cws) , BE533(nobody) . E5534(nogroup)

lucifer:™ #

lucifer:™ #

lucifer:™ # echo $TERM

dumb

lucifer:™ # |}

Figure 1: User as he sees his hijacked SSH session.

5 AN IMPLEMENTATION 6

P ssharpiSziem0azrn. [[

Welcome to lucifer,

Lazt login: Sun Jun 16 10:14:29 2002 from 192,168,0,2
Hawve a lot of fun,..

lucifer:™ # id

uid=0{root) gid=0(root) groups=0lroot),1(bin},14{uucp) 150 shadow) 16{dialout) 17
faudio) . 504(cws) , BE533(hobody) . E5534 { nogroup)
lucifer:™ #

lucifer:™ #

lucifer:™ # echo $TERM

dumb

lucifer:™ # |}

I — —

Figure 2: The terminal of the attacker with hijacked SSH session inside

REFERENCES 7

Acknowledgments
Folks from the segfault dot net consortium ;-) for discussing and offering test environments.
If you like to donut some hardware or money to these folks let me know. It would definitely
help to let continue research on this and similar topics.

Also thanks to various other folks for discussing SSH with me.

This paper is also available in ASCII format in the incredible phrack magazine. Phrack
is athttp://www.phrack.org

References

[dsniff] Dug Song As far as | know the first SSH1 MiM implementation "monkey in the
middle” part of dsniff package.

http://www.monkey.org/"dugsong/dsniff

[ettercap] Good sniffer/mim combo program for lazy hackers ;-).
http://ettercap.sourceforge.net

[7350ssharp] TES@\n implementation of the attacks described in this paper.

http://stealth.7350.0rg/7350ssharp.tgz

